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Abstract. The temperature and layer-thickness dependence of the magnetoresitance (MR) in
magnetic multilayers is discussed with the use of the finite-temperature band theory in which
the effect of spin fluctuations is taken into account by means of the static functional-integral
method. It is shown that our model calculation explains well the observed mMr data of Fe/Cr
multilayers recently reported by Gijs and Okada.

1. Introduction

The giant magnetoresistance (GMR) [ 1, 2] in magnetic multilayers is one of the most attractive
phenomena in current solid-state physics. It has been theoretically studied with a semi-
classical approach [3-7] based on the Boltzmann equation or a microscopic approach
[8-12] based on the Kubo formula. Quite recently, the present author [12] has discussed
the temperature dependence of the MR ratio with the use of the finite-temperature band
theory [13-13], in which the effect of spin fluctuations at finite temperatures is taken
into account by using the static functional-integral method combined with the coherent
potential approximation (CPA) [16]. This approach has been shown to reconcile the
duality of d electrons showing both the localized and itinerant character, and to be
useful in understanding various finite-temperature properties of transition metais, alloys and
multilayers [13-15]. In order to discuss the MR of magnetic multilayers at finite temperatures
[12], we introduced randomness to multilayers and calculated their conductivity which
is expressed in terms of the spin- and layer-dependent coherent potentials. It has been
shown by our model calculation [12] that the calculated MR ratio explains the following
features observed in many transition-metal muitilayers [17-21] well: (i) the MR ratio is more
significantly temperature dependent than the (average) layer moment, (ii) the temperature
dependence of the MR ratio is more considerable in a multilayer with a larger ground-state
MR ratio, and (jii) it is quasi-linear near the Curie temperature. We have adopted in [12] a
very simple model where only the electron-scattering process between the adjacent magnetic
layers is included. The purpose of the present paper is to generalize our model so as to take
account of the the layer-thickness dependence of the MR ratio in order to enable a more
realistic discussion of experimental data.

The paper is organized as follows: in section 2, we briefly review the finite-temperature
band theory [13-15] and obtain the expression for the MR ratio including the layer-
thickness dependence in magnetic layers. In section 3, our theory is applied to analyse the
experimental data on Fe/Cr multilayers recently reported by Gijs and Okada [21]. Section 4
is devoted to the conclusion and discussion,
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2. Calculation method

2.1. The static spin-fluctuation theory

We adopt an Ng-layer thin film with the simple-cubic (001) interface. The layer parallel
to the interface is assigned by the index n (= 1 — N). The film is assumed to consist of
magnetic A and non—-magnetic B atoms, which are randomly distributed in layer n with

concentrations of x, and y,, respectively (x, + y; = 1). The film is described by the
single-band Hubbard modei as

H = E E "*‘J";[scfs + Z Z f:‘zcjsﬂrs + Z Usnjrnjy 18y
5 J s gl J

where ¢;; is an annihilation operator of an electron with spin s(=1, |} on the lattice site
5y = C}sc_j;, and #; is the hopping integral. The atomic potential ¢; and the on-site
interaction U; are assumed to be given by ¢* and U* when the lattice site j is occupied by
a i (= A,B) atom.

In order to study the finite-temperature properties of the magnetic film, we apply the

functional-integral method within the static approximation to the model Hamiltonian given
by (1). The partition function is given by [13]

2= [ TTaw [Tty expl-Btdo + 60 @

J i)
with

do =13 U027 +27) @
j

exp(~B¢1) = Tr exp(—5 Her) @

Her =) ) (le; = G/2Upv1n; — §sUigymy} + Hy. ©)
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Here n; = ny4 + njy, m; = njy — nyy, and HY denotes the second (hopping) term in (1).
We can evaluate the partition function by calculating the partition function of the effective
one-¢lectron system given by Heg including the random charge (v;) and exchange (Z;) fields
with the Gaussian weight, exp(—S¢s). We take account of the charge field by the saddle-
point approximation and the exchange field by the alloy-analogy approximation with the
CPA. When the decoupling approximation is employed, the modified CPA equation is given
by [13,14]

I TA+ 9, TR =0 (6)
with

Tr — & — s(U) /U0 — s + IR/ 2DHEN™ = (Bns = 8 1Fs
" [1— (& — Bug) Fus P — (U3 /2)HEG)

)

where £} = &} + (U} /2}{N}}. The coherent potential E,, for an s-spin electron on the layer
n, is determined by (6) and (7), and is a function of &%, (£}, {(¢1)?) and (N} (= —i{v}}).
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Figure 1. The adopted film consisting of magnetic (M, and M;) and non-magnetic (N, and
N7) layers, their thicknesses being M and N, respectively. The moments on the magnetic layers
align in the (2) antiferromagnetic (AF) and (b} ferromagnetic (F) configurations.

The self-consistent equations for {2}, {(£)%), and {N}} are given by

6 = [ a5 che @®)
<@ﬁ=f%#®m) ©
= | e & Y (-1/m m F(@ o)

where f(g) is the Fermi-distribution function. We should note that F£;.(¢), the local
Green function of an s-spin electron at a A atom on layer », and Cj(;;), the distribution
of the potential of (U}/2)¢; when a A atom occupies the layer #, are functions of the
coherent potentials T,;, which are functions of (¢}, {(¢1)?), and (N}). Thus we have
to simultaneously solve these quantities; details having been reported elsewhere [13-15].
Once these are determined, the average of the magnetic moment and its root-mean-square
(RMS) values of a A atom on the layer » are given by

(MY = (&g} (11)
{MNHY? = [((E1)%) — @T/UDYA. (12)

2.2. Calculations of the MR ratio

By using the CPA, we have shown [11] that the conductivity for currents parallel to the film
layer is given by

=N o (13)
with
e LT [o () s

(Ans + Ah)z )

[(Ans - Als)z + (Aps + Ais)_z] (15)
which is valid within the Bomn approximation. In equations (13)~(15) A,; = Re I (),
Aps =|Im I, (€) |, By is the coherent potential of an s-spin electron on layer n, and ay;
and v, are specified by the electronic structure of the film (see equations (19) and (20) in
[11]). We employ our conductivity formula in a semi-phenomenoclogical way to discuss the
layer-thickness dependence of the MR ratio.

Tnls = 8?1! + (1 - 3m‘) (
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We adopt a system consisting of magnetic (M, M») and non-magnetic (N,, N») iayers
(see figure 1), whose thickness are M and N, respectively. Bulk scatterings are assumed
to be important in these layers. When moments on the magnetic layers are in the
antiferromagnetic (AF) configuration as shown in figure 1(a), the real and imaginary parts
of the coherent potentials are given by {11]

ASF _GANF = AL —iA forn e M, (16)
AN AR = A —iA forn € M (17)
ADF AR = Ag —iAg for n € Ny, N;. (18)

The s-spin contribution to the conductivity is classified into five categories depending on
whether » and m are in magnetic or non-magnetic layers. It is given by

2chF cbf 1 1 1 1 agr
AF MM “NN AF
= MM 4c d I8
% = nran A T M”(A,+An * ﬁ-s'!'f-\o) T (ms 2A~s)+ Ao
(19)
where
ot = N7 e/ Y Y Guntum (20)
neM; meMz
FHemPav Y Y tumTum (21)
neM, meM,

and cNN, e, and dN are given by similar expressions, the spin dependence in gy, and thms
being neglected. In equation (19), subscripts MM, NN, and MN denote the contributions
from the interlayer scatterings between magnetic layers, between non-magnetic layers, and
between magnetic and non-magnetic layers, respectively, In contrast, the single subscript
M (N) expresses the coniribution from the infralayer scatterings within magnetic (non-
magnetic) layers. We employed the T = 0 limit of equations (13)+(15) because the relevant
temperature is much less than the Fermi energy.

In the ferromagnetic (F) configuration (figure 1(b)), on the other hand, the real and
imaginary parts of the coherent potentials are given by [11]

AE —iAF = A, —iA for n € M;, M; 22)
AL —iAF = Ag—iAg for n € Ny, N,. 23

We obiain the s-spin contribution to the conductivity given by

F F F
E O 8cin: dy . dy
o = + + + -i- .
: A (As + Ag) Ap
The total conductivities in the AF {(oAF) and F (¢F) configurations are obtained by

summing both the up-spin and down-spin contributions (equation {14)}. The difference
between them is given by

1 1 1
S N N —

— 4F _ sAF _Eyy__ _aye
Ao =6" -0 Aaﬁ(a-&-ﬁ)[(a B)* + dbaf] (26)

(24)
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where

a=Ay/Ao  B=AyjAy b= (chu — chin)/ch @7

with the configuration dependence of the coefficients being included only in cppy. Equation
(25) shows that the GMR arises mainly from the conductivity contribution from interlayer
scatterings between the magnetic layers M; and M), because other contributions in
equations (19} and (24) are cancelled out in calculating the difference Ao,

By using equations (19), (24}, and (26), the MR ratio AR/R is given by [11]

AR _(R¥—RP) Ao _ (@—-P?  bla+p) )
R RF GAF 48 + 4o8(1 — b) X 28)
with
' -1
+ ) N 1
X= [1+ P +g1( )(a+ﬁ)( ﬁ—)+gz( )(a+ﬁ)] .29)
In equation (29) gg, 21, and g, are defined by
dy 2o N enn + dn N2
doym 2 oMM 1(M) ( 2enmm ) —& (M) 0
which come from the following relations:
emn X MN e O diy o N2 evm X dy o« M2, (31)

The first and second terms in equation (28) denote the contributions from the short-
circuit and valve effects, respectively [11,12]. The short-circuit effect has been discussed
previously [3-9]. It has been shown {11, 12] that the valve effect works to enhance the GMR
[11]. By using a phenomenological approach, Edwards et al [6] obtained a result similar to
the first term of equation (28) although their discussion is limited to the T = Q case. When
we set X = 1 in equation (28), it yields

‘AR (@-1y N bla + 1)2
R 4a 4a(l — b)

‘This is the result obtained in [12], where only the contribution from the interlayer scattering
between the magnetic layers is taken into account.

Now we consider the coherent potentials of the film, which can be evaluated by solving
equations (6)~(10). The real and imaginary parts of the coherent potential in the magnetic
(M; or M) layer are given within the Borm approximation by [12]

(@ =a/B). (32)

UA
As=x [é“" - (—2—) {M"‘}] +y&B (33)
A; = AT+ A5+ AP 39
with
T =A _ =B uA A :
Ay =mpxy|&E"—& —3 5 {M?) (35)

UA
A*-rrpx( )[((M*)} (A2 (36)
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where £ = &* + (U*/2) (N*) (A = A,B), UB = 0 for a non-magnetic B atom, and p
is the density of states at the Fermi level. The first term Af in equation (34) arises from
the scattering due to random Hartree—Fock potentials for an s-spin electron; the second
term (A%) originates from the effect of spin fluctuations; the third term AP arises from the
electron—-phonon interaction, whose explicit form is not necessary here. On the other hand,
the real and imaginary parts of the coherent potential in the non-magnetic (N; or N») layer
are assumed to be given by

Ap=0 (37
Ap = Af + Al (38)

Equation (37) defines the origin of the energy scale, and the first and second terms in
equation (38) denote the contributions from random potentials and phoneons, respectively.

For a simplicity of our model calculation, we neglect the phonon contributions given by
AP and AE in equations (34) and (38); related discussion will be given in section 4. Using
equations (27), (34), and (38), we obtain «, 8, and b given by

o=a +a =AB+m(TIP+ Ay uwT)? ~m()? (39)
B=F -+ =AB-m(TP+ Ay [nT) -m(Ty] (40)
B m(T)?
b TR T CT G IB + mDA + (T = m(T 1P 0
with
m(T) = (MAY/ Mo (42)
w(T) =/ ((MAY2)/ My (43)
A =mpxy(UAMo/2)*/ Ao (44)
B=(2/U*M)Ep —&4) (45)
C = 2/mp UAMp)? (46)
where My is the ground-state magnetic moment.
AL T = 0K where m(0) = u(0) = 1, equations (39)«{41) become
w=al =0)=AB+1P* @n
Bo=AT =0)=A(B-1)? (48)
by = b(T =0) = 1/[1+ C~' y2 (B + 1)Y] (49)

from which the coefficients A, B and C are expressed in terms of ag, B0, bo, and y as

A= (Jag — /Bo)*/4 (50)
B = (v + vBo) /(W& — /Bo) (51)
C = [Bo/(1 — b)) y* (B2 + 1)2. (52)

The normalized magnetic moment m(T) and its RMS value u{(T) are in principle
calculated by using equations (11) and (12) in the finite-temperature band theory [13, 14],
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Figure 2. The dependence of the MR ratic AR/ R on the thickness ty (nm), of the non-magnetic
layer of (3 nm Fe + fy Cr) multilayers at (a) T = 4.2 K and (b) T = 293 K. Solid curves show
the calculated results and circles express the observed data [21], the dashed curve being & guide
to the eye.

Here, however, we adopt simple, analytic expressions of m(T) and x(T) for cur model
calculation given by [12]

m(T) =+/1—(T/Te)? w(T) = 1. (53)

‘Now we may calculate the MR ratio AR/ R as functions of T/ Tz and N/M with the use
of equations (28), (29), (39)-(41) and (50}-{53), when we treat «g, £g, Do, g0, 51+ §2, and
¥ as input parameters. Our strategy for calculating the temperature- and layer-thickness-
dependent MR ratic is as follows: we determine a set of the six parameters, ao, Bo. bo. go,
81, and g7, 0 as to reproduce the N /M dependence of the ground-staie MR ratio. Note that
oy, P, and by are ground-state values of the relevant parameters and that gp, g1, and g»
given by equation (30} are determined by the structure of the multilayer. Then, fixing the
six parameters thus determined, we calculate the finite-temperature MR ratio for a chosen y
parameter. We will demonstrate the feasibility of our theory by showing a mode! calculation
in the next section.

3. Model calculations

In order to make our discussion concrete, we consider, as an example, the systematic,
experimental data for Fe/Cr layers recently reporied by Gijs and Okada [21], which are
reproduced in figures 2 and 3. Circles in figures 2(a) and (b) show their data on the MR
ratio AR/R at T = 4.2 K and 293 K, respectively, as a function of the thickness #y (nm), of
the non-magnetic (Cr) layer, in (3 nm Fe + #y Cr) multilayers. The temperature dependence

of the observed MR ratio is shown in figure 3 where symbols denote the data for various 7y
values.
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0 100 200 300 400 500
T (K)
Figure 3. The temperaiure dependence of the MR ratio AK/R for various iy. Solid curves

denote the results cafculated with y = 0.04 and symbols the observed data [21]. The inset
shows the AR/R calculated for £y = 1.0 nm by changing the y value in the model.

Firstly we consider the case of T = 4.2 K shown in figure 2(a). It should be noted that
the oscillation in the observed MR ratio arises because the MR is measured only for the iy
vahies for which the Fe moments are coupled antiferromagnetically [1,2], It is then only
meaningful to compare the calculated and observed results with the envelope of the observed
AR/R. The solid curve in figure 2(a) shows the result calculated by using equations (28),
(29), (39(41) and (50)(52) with ap = 6, o= 1 [6), by = 0, go = 0, gy = 0.64, and
g2 = 2.68. These parameters are chosen such that we have a good fit to the envelope of
the observed ty dependence of AR/R {22},

Next we consider the MR ratio at T’ = 293 K shown in figure 2(b). We assume the Curie
temperature of the multilayer to be T¢ = 1000 K because the thickness of the Fe layers
of the Fe/Cr multilayers adopted {21] is sufficiently thick to sustain the Curie temperature
of bulk Fe. The solid curve in figure 2(b) shows the #y-dependent AR/R at T =293 K
calculated with y = 0.04. The calculation reproduces the observed fy dependence of the
MR ratio well.

Similar calculations are performed by changing the temperature. Solid curves in figure 3
show the calculated AR/R as a function of T and fy. Our calculation explains the
behaviour of the observed data fairly well. For the case of & = 1.0 nm, however, the
agreement between the calculated and observed results is not satisfactory, so we repeated
our calculation for this case by changing the y value, the result of which is shown in the
inset. When the y value is decreased, the fit to the observed data becomes better below
200 K, but worse above 300 K. This disagreement may be due to the fact that the interface
scattering, neglected in our calculation, may be important in thin Cr layers. It has been
shown by the microscopic calculation for Fe/Cr multilayers [23] that spin fluctvations at the
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interface are more significant than those in the bulk. We would expect that the temperature
dependence of the MR ratio becomes more considerable than that of our calculation because
spin fluctuations at interface layers work to reduce the MR ratio further, particularly at low
temperatures.

(b)

a, B

—

X 12

. -—

0 . : . A— 0
00 02 04 06 08 10 12
TiTe

Figure 4, (2) The temperature dependence of &, §, and «/f. (b) Their decomposition:
o =g+ and 4 = 85 + B5 (see equations (39) and (40)).

In order to study the temperature dependence of the MR ratio in more detail, we show,
in figure 4(a), & and £ as a function of the temperature. Althoughe¢ =6 and B =1 at
T =0, they increase up to ¢ = 8 = 16.1 at T = Tc because of the contribution from spin
fluctuations. Then the ratio «/B changes from six at T = 0 to unity at T > T. Figure
4(b) shows the decomposition of @ and 8 to & = e+ of and g = "+ B° where &' and S*
denote the contributions from the random potentials whereas o® (= £%) denote those from
spin fluctuations (see equations (39) and (40)). Figure 5(a) shows the calculated temperature
dependence of the resistivity normalized by RC, the resistivity at T = T, for various ty
values in the AF and F configurations in the temperature range of 0.0 € T/T¢ < 1.0
‘We should remark that the R® value is much decreased when ty becomes larger. The
relevant GMR ratio is plotted in figure 5(b), where the inset shows the enlarged plot for
06 T/Tc 1.0
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Figure 5. (a) The temperature dependence of the resistivity R/RC in AF (solid curves) and
F (dashed curves) configurations for various ty, RC being the resistivity at T = To. (B)

The temperature dependence of the MR ratic AR/R, the inset showing the enlarged plot at
06 T/Tc < 1.0

The temperature dependence of the MR ratio normalized by its ground-state value,
(AR/R)p, is plotted in figure 6 for various fy values. Note that in the case of ty = 0.0,
the MR ratio is given by equation (32). It is interesting to note that this normalized MR
ratio is almost independent of the #y value, which arises from the fact that the factor X
given by equation (29) has little temperature dependence. This implics that the temperature
dependence of the MR ratio is predominantly determined by that of the ratio 2 = /8.
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Figure 6. The temperature dependence of the MR ratio normalized by its ground-state value,
{AR/R)g. for various ty {see text).

4. Conclusion and discussion

We have discussed the temperature- and layer-thickness-dependent MR ratio in magnetic
layers by generalizing the conductivity expression obtained previously [11,12]. We have
included contributions from the random exchange potentials and spin fluctuations, which
are considered to be the main scattering mechanisms yielding the resistivity in transition-
metal muliilayers. In what follows we briefly examine the effect of the electron—phenon
interaction, which is neglected in our model calculation. When contributions AP and Ag
from the electron—phonon interaction in equations (34) and (38) are taken into account,
a(= As/Ag) and B(= A, /Ap) are expected to have an additional temperature dependence
besides those arising from spin fluctuations and random exchange potentials. Even in
this case, however, the matio ¢ = w/8 still has the bound values of six at 7 = 0 and
unity at T > T [24], as was shown in figure 4(a), although the temperature dependence
of aat 0 < T/Te < | may be slightly modified from that calculated without phonon
contributions. This justifies, to some extent, our approximation neglecting the contribution
from the electron—phonon interaction, because the temperature dependence of the MR ratio is
mainly determined by that of the ratio 2 = «/B, as was shown at the end of section 3. The
essential features of the temperature and Cr-thickness dependence of the MR ratio of Fe/Cr
multilayers Gijs and Okada [21] recently reported are fairly well explained by onr model
calculation, in which the spin-dependent bulk scattering is assumed to be predominant. For a
better understanding of the observed data, it would be necessary to also include the interface
scattering and to investigate the respective roles of the interface and bulk scatterings,
although the MR in Fe/Cr systems is conventionally considered to arise from the interface
scatiering {25}, In the present study, our finite-temperature band theory [12-15] has veen
semi-phenomenologically employed. We are now considerating performing a microscopic
calculation of the MR at finite temperatures, introducing randomness on the interface andfor
bulk layers into the model employed in {23].
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