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Abstract. The temperature and layer-thickness dependence of the magnetoresilance (m) in 
magnetic multilayers is discussed with Lhe use of ule finite-temperature band theory in which 
the effect of spin Euctuations is taken into account by means of ule slatic functional-integral 
method. It is shown that our model calculation explains well the observed m dala of FeKr 
multilayers recently reported by Gijs and Okada 

1. Introduction 

The giant magnetoresistance (GMR) [ I ,  21 in magnetic multilayers is one of the most attractive 
phenomena in current solid-state physics. It has been theoretically studied with a semi- 
classical approach [3-71 based on the Boltzmann equation or a microscopic approach 
[%12] based on the Kubo formula. Quite recently, the present author [I21 has discussed 
the temperature dependence of the hm ratio with the use of the finite-temperature band 
theory [13-151, in which the effect of spin fluctuations at finite temperatures is taken 
into account by using the static functional-integral method combined with the coherent 
potential approximation @PA) [16]. This approach has been shown to reconcile the 
duality of d electrons showing both the localized and itinerant character, and to be 
useful in understanding various finite-temperature properties of transition metals, alloys and 
multilayers [13-15]. In order to discuss the hm of magnetic multilayers at finite temperatures 
[12], we introduced randomness to multilayers and calculated their conductivity which 
is expressed in terms of the spin- and layerdependent coherent potentials. It has been 
shown by our model calculation [12] that the calculated hm ratio explains the following 
features observed in many transition-metal multilayers [ 17-21] well: (i) the hm ratio is more 
significantly temperature dependent than the (average) layer moment, (ii) the temperature 
dependence of the hm ratio is more considerable in a multilayer with a larger ground-state 
hm ratio, and (iii) it is quasi-linear near the Curie temperature. We have adopted in [I21 a 
very simple model where only the electron-scattering process between the adjacent magnetic 
layers is included. The purpose of the present paper is to generalize our model so as to take 
account of the the layer-thickness dependence of the M R  ratio in order to enable a more 
realistic discussion of experimental data. 

The paper is organized as follows: in section 2, we briefly review the finite-temperature 
band theory [13-15] and obtain the expression for the M R  ratio including the layer- 
thickness dependence in magnetic layers. In section 3, our theory is applied to analyse the 
experimental data on Fe/Cr multilayers recently reported by Gijs and Okada [21]. Section 4 
is devoted to the conclusion and discussion. 
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2. Calculation method 

2.1 .  The static spin-fluctuation theory 

We adopt an Nr-layer thin film with the simple-cubic (001) interface. The layer parallel 
to the interface is assigned by the index n (= 1 - Nr). The film is assumed to consist of 
magnetic A and non-magnetic B atoms, which are randomly distributed in layer n with 
concentrations of x, and y., respectively (x,, + y. = 1). The film is described by the 
single-band Hubbard model as 

where cj. is an annihilation operator of an electron with spin s(=t. &) on the lattice site 
j ,  njs = cJscjr. and tjl is the hopping integml. The atomic potential E, and the on-site 
interaction Uj are assumed to be given by E' and U& when the lattice site j is occupied by 
a ). (= A, B) atom. 

In order to study the finite-temperature properties of the magnetic film, we apply the 
functional-integral method within the static approximation to the model Hamiltonian given 
by (1). The partition function is given by [131 

with 

exp(-b@d = Tr exp(-bHd (4) 

H& = (5) [ [ E j  - ( i / ~ ) ~ j u j ]  nj - +U,<, m,} + H;. 
r j  

Here n j  = njt + n,r. mj = nj t  - nj l ,  and Hi denotes the second mopping) tenn in (1). 
We can evaluate the partition function by calculating the partition function of the effective 
oneelectron system given by H,R including the random charge ( u j )  and exchange (ti) fields 
with the Gaussian weight, exp(-ph). We take account of the charge field by the saddle- 
point approximation and the exchange field by the alloy-analogy approximation with the 
CPA. When the decoupling approximation is employed, the modified CPA equation is given 
by [13,141 

xn Tk + yn T,", = 0 (6) 

with 

where Z i  = +(U;/Z)(N;). The coherent potential Ems for an s-spin electron on the layer 
n, is determined by (6) and (7). and is a function of E,", (<,"), ((c;)2) and (Ni) (= -i(ui)). 
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T 
MI 

Figure 1. The adopted film consisting of magnetic (MI and Mz) and nonmagnetic (NI and 
N2) layers. their thicknesses being M and N, respectively. The moments on the magnetic layers 
align in the (a) antiferromagnetic (e) and (b) ferromagnetic (f) configurations. 

The self-consistent equations for {<i), ((<:)’), and ( N k )  are given by 

where f(e) is the Fermi-distribution function. We should note that FiS(c) ,  the local 
Green function of an s-spin electron at a h atom on layer n. and C,”(<j), the distribution 
of the potential of (Ut/Z)<j when a h atom occupies the layer n,  are functions of the 
coherent potentials En$, which are functions of (<,”), ((<k)z), and { N i ) .  Thus we have 
to simultaneously solve these quantities; details having been reported elsewhere [13-151. 
Once these are determined, the average of the magnetic moment and its root-mean-square 
(RMS) values of a h atom on the layer n are given by 

2 2 .  Calculations of the MR ratio 
By using the CPA, we have shown [ 1 1 1  that the conductivity for currents parallel to the film 
layer is given by 

U = N;’ U” 

n 
with 

which is valid within the Bom approximation. In equations (13x15) AnS = Re C,(E), 
Ans =I Im E,&) 1, E,,$ is the coherent potential of an s-spin electron on layer n ,  and a,,!, 
and U, are specified by the electronic structure of the film (see equations (19) and (20) in 
[ll]). We employ our conductivity formula in a semi-phenomenological way to discuss the 
layer-thickness dependence of the MR ratio. 
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We adopt a system consisting of magnetic (MI, M2) and non-magnetic (NI, N2) layers 
(see figure I) ,  whose thickness are M and N, respectively. Bulk scatterings are assumed 
to be important in these layers. When moments on the magnetic layers are in the 
antiferromagnetic (AF) configuration as shown in figure l(a), the real and imaginary parts 
of the coherent potentials are given by 1111 

The s-spin contribution to the conductivity is classified into five categories depending on 
whether n and m are in magnetic or non-magnetic layers. It is given by 

where 

and cm, AF cm, AF afld df are given by similar expressions, the spin dependence in anmx and rnms 
being neglected. In equation (19), subscripts MM, NN, and MN denote the contributions 
from the interlayer scatterings between magnetic layers, between non-magnetic layers, and 
between magnetic and non-magnetic layers, respectively. In contrast, the single subscript 
M (N) expresses the contribution from the intralayer scatterings within magnetic (non- 
magnetic) layers. We employed the T = 0 limit of equations (13H1.5) because the relevant 
temperature is much less than the Fermi energy. 

In the ferromagnetic (F) configuration (figure If$)), on the other hand, the real and 
imaginary parts of the coherent potentials are given by 1111 

We obtain the s-spin contribution to the conductivity given by 

The total conductivities in the AF (aAF) and F (aF) configurations are obtained by 
summing both the upspin and down-spin contributions (equation (14)). The difference 
between them is given by 
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where 

(27) 

with the configuration dependence of the coefficients being included only in cm. Equation 
(25) shows that the GMR arises mainly from the conductivity contribution from interlayer 
scatterings between the magnetic layers MI and Mz, because other conhibutions in 
equations (19) and (24) are cancelled out in calculating the difference A u .  

-= A R  (RAF - RF) - A 0  - ((a;:' + 

F 
(Y = AtJAo fi  = ALIA0 b (cF MM - C Z ) / C m  

By using equations (19), (24). and (26). the MR ratio A R / R  is given by [l l]  

(28) R RF UAF 

with 

In equation (29) go. gl, and gz are defined by 

which come from the following relations: 

c"MN c " ~ ( d ~ a N ~  w a d M a M z .  (31) 

The first and second terms in equation (28) denote the contributions from the short- 
circuit and valve effects, respectively [11,12]. The short-circuit effect has been discussed 
previously 13-91. It has been shown [ l l ,  121 that the valve effect work to enhance the GMR 
11 11. By using a phenomenological approach, Edwards et a1 [6] obtained a result similar to 
the first term of equation (28) although their discussion is limited to the T = 0 case. When 
we set X = 1 in equation (28). it yields 

- A R  (a-1)2 b(a+1)2 
R 4a +4a( l  -b) (a = 4 B ) .  _=- 

This is the result obtained in [ 121, where only the contribution from the interlayer scattering 
between the magnetic layers is taken into account. 

Now we consider the coherent potentials of the film, which can be evaluated by solving 
equations (6HlO). The real and imaginary parts of the coherent potential in the magnetic 
(MI or M2) layer are given within the Born approximation by [ 121 

A, = X  [EA - - s  (q) (MA)] + YEB (33) 

A, = A: + A s  + Ap (34) 

with 
A ~ = x p ~ y [ P " - 2 ~ - s ( ~ ) ( M ~ ) ]  2 

(35) 

(36) 
UA As = r p n  (1) [ ( ( M A ) 2 }  - (MA)*] 
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where CL = &A + (U*/2) ( N A )  (h = A,B), U B  = 0 for a non-magnetic B atom, and p 
is the density of states at the F m i  level. The l in t  term A: in equation (34) arises from 
the scattering due to random Hartree-Fock potentials for an s p i n  electron; the second 
term (A‘) originates from the effect of spin fluctuations; the third tenn AP arises from the 
electron-phonon interaction, whose explicit form is not necessary here. On the other hand, 
the real and imaginary parts of the coherent potential in the non-magnetic (NI or N2) layer 
are assumed to be given by 

Equation (37) defines the origin of the energy scale, and the first and second terms in 
equation (38) denote the contributions from random potentials and phonons, respectively. 

For a simplicity of our model calculation, we neglect the phonon contributions given by 
At’ and Ai in equations (34) and (38); related discussion will be given in section 4. Using 
equations (27). (g), and (38). we obtain a. @, and b given by 

01 = d+ d = A [ B  +m(T)]’  + Ay-’ [p(T)’ - m(T)’I (39) 

j3=Br+ps = A [ E - m ( T ) ] 2 + A y - ’ [ p ( T ) 2 - m ( T ) Z l  (40) 

(41) 
m V ) ’  

m(TY + C-’ {yIB2 + VZ(T)~I + [ f i (TI2 - m(T)21}2 
b= 

with 

m(T) = (MA)/& 

= -/MO 

A = ~ p ~ y ( U ~ M o o / 2 ) ~ / A ,  

B = (2/UAMo)(Bs - E A )  
c = (2/Rp UAMo)’ 

where MO is the ground-state magnetic moment. 
At T = 0 K where m(0) = p(0) = 1, equations (39)-(41) become 

a0 = U ( T  =o) = A @ +  ij2 

BO = @ ( T  =o) = A ( B  - i)z 

bo = b(T = 0)  = 1/[1+ C-’ y2(Bz + l)’] 
from which the coefficients A,  B and C are expressed in terms of WO, BO, bo, and y as 

A = (& - &)’I4 

B = (A+ &)/(%I% - &) 

C = [bo/(l -bo)] y2 (Ez  + I)’. 
The normalized magnetic moment m(T) and its RMS value p ( T )  are in principle 

calculated by using equations (1 1) and (12) in the kite-temperature band theory [13,14]. 
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Figure 2. The dependence of the s(R mi0 AR,  R on lhe llucknejs t~ (nm). of the non-magneuc 
layer of (3 nm Fe I IN Cr) mullitayerr at (a) T = 4.2 K 3nd (b) T = 293 K. Solid cunes show 
the cdcutmd resulu and circles express the observed daw 12II. the dvhcd curve being a guide 
to the eye. 

Here, however, we adopt simple, analytic expressions of m(T)  and @(T) for our model 
calculation given by 1121 

m(T) = 4- &(T) = I. (53) 

Now we may calculate the .MR ratio AR f R as functions of Tf Tc and N / M  with the use 
of equations (28), (29). (39x413 and (50H53). when we treat (YO, BO. bo, go, 61, 62. and 
y as input parameters. Our strategy for calculating the temperature- and layer-thickness- 
dependent MR ratio is as follows: we determine a set of the six parameters. (YO, Bo, bo. 60, 
61. and 82, so as to reproduce the N J M  dependence of the groand-store MR ratio. Note that 
cro, BO, and bo are ground-state values of the relevant parameten and that go, 81. and 62 
given by equation (30) are determined by the svucture of the multilayer. Then, k i n g  the 
six parameters thus determined, we calculate thefinite-temperorure hm ratio for a chosen y 
parameter. We will demonstrate the feasibility of our theory by showing a model calculation 
in the next section. 

3. Model calculations 

In order to make our discussion concrete, we consider, as an example, the systematic, 
experimental data for Fe/Cr layers recently reported by Gijs and Okada 1211, which are 
reproduced in figures 2 and 3. Circles in figures 2(a) and (b) show their data on the MR 
ratio A R / R  at T = 4.2 K and 293 K, respectively, as a function of the thickness t~ (nm), of 
the non-magnetic (Cr) layer, in (3 nm Fe + t~ Cr) multilayers. The temperature dependence 
of the observed MR ratio is shown in figure 3 where symbols denote the data for various fN 
values. 



28 

0.3 

0.2 

[I 

LL 
-4 

\ 

0.1 

0.0 

H Hasegawa 

0 100 200 300 400 ! 

- 
0 

T (K) 
Fgum 3. The tempemure dependence of the MR ratio ARIR for various 1 ~ .  Solid curves 
denote the results calculaled with y = 0.04 and symbols the obse~ed data 1211. The insel 
shows the A R I R  calculated for IN = 1.0 nm by changing the y value in lhe model. 

Firstly we consider the case of T = 4.2 K shown in figure ;?(a). It should be noted that 
the oscillation in the observed MR ratio arises because the M R  is measured only for the fN 

values for which the Fe moments are coupled antifemmagnetically [ 1,2]. It is then only 
meaningful to compare the calculated and Observed results with the envelope of the observed 
ARIR. The solid curve in figure 2(a) shows the result calculated by using equations (28). 
(29), (39H41) and (50H.52) with q = 6, Bo = 1 [61, bo = 0, go = 0,gt = 0.64, and 
gz = 2.68. These parameters are chosen such that we have a good fit to the envelope of 
the observed t N  dependence of AR/R [Z]. 

Next we consider the hm ratio at T = 293 K shown in figure 2(b). We assume the Curie 
temperature of the multilayer to be Tc = loo0 K because the thickness of the Fe layers 
of the Fe/Cr multilayers adopted [Zl] is sufficiently thick to sustain the Curie temperature 
of bulk Fe. The solid curve in figure 2@) shows the *-dependent AR/R at T = 293 K 
calculated with y = 0.04. The calculation reproduces the observed fN dependence of the 
MR ratio well. 

Similar calculations are performed by changing the temperature. Solid curves in figure 3 
show the calculated AR/R as a function of T and t ~ .  Our calculation explains the 
behaviour of the observed data fairly well. For the case of i~ = 1.0 nm, however, the 
agreement between the calculated and observed results is not satisfactory, so we repeated 
our calculation for this case by changing the y value, the result of which is shown in the 
inset. When the y value is decreased, the fit to the observed data becomes better below 
200 K, but worse above 300 K. This disagreement may be due to the fact that the interface 
scattering, neglected in our calculation, may be important in thin Cr layers. It has been 
shown by the microscopic calculation for Fe/Cr multilayers [23] that spin fluctuations at the 
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interface are more significant than those in the bulk. We would expect that the temperature 
dependence of the MR ratio becomes more considerable than that of OUT calculation because 
spin fluctuations at interface layers work to reduce the MR ratio further, particularly at low 
temperatures. 
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P@re 4. (a) The temperatwe dependence of U, 6, and U/@. (b) me3 dmmpositim 
I = er + us and 0 = 0' -+ 0' (see equations (39) and (40)). 

In order to study the temperature dependence of the MR ratio in more detail, we show, 
in figure 4(a), (Y and j3 as a function of the temperahue. Although (Y = 6 and j3 = 1 at 
T = 0, they increase up to (Y = j3 = 16.1 at T > TC because of the contribution from spin 
fluctuations. Then the ratio L Y / B  changes from six at T = 0 to unity at T > Tc. Figure 
4@) shows the decomposition of LY and j3 to LY = U'+ us and j3 = j3' + Bs where ar and ,Y 
denote the contributions from the random potentials whereas as (= j3*) denote those from 
spin fluctuations (see equations (39) and (40)). Figure 5(a) shows the calculated temperature 
dependence of the resistivity normalized by RC, the resistivity at T = Tc. for various r~ 
values in the AF and F configurations in the temperature range of 0.0 < T/Tc < 1.0. 
We should remark that the RC value is much decreased when f~ becomes larger. The 
relevant GMR ratio is plotted in figure 5@), whee the inset shows the enlarged plot for 
0.6 < T/Tc < 1.0. 
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Figure 5. (a) The temperature dependence of the resistivity R/Rc in AF (solid curves) and 
F (dashed curves) configurations lor various tN,  Rc king the resistivity at T = Tc. (b) 
The tempemure dependence of the MR ratio ARfR, the inset showing lhe enlarged plot at 
0.6 6 TlTc < 1.0. 

The temperature dependence of the MR ratio normalized by its ground-state value, 
( A R / R ) o .  is plotted in figure 6 for various t N  values. Note that in the case of t N  = 0.0, 
the MR ratio is given by equation (32). It is interesting to note that this normalized MR 
ratio is almost independent of the t N  value, which arises from the fact that the factor X 
given by equation (29) has little temperature dependence. This implies that the temperature 
dependence of the MR ratio is predominantly determined by that of the ratio a = a/& 
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Figure 6. The lernperature dependence of the MR mtio normalized by its ground-slate value, 
f A R / R ) o .  for various r~ (see text). 

4. Conclusion and discussion 

We have discussed the temperature- and layer-thicknessdependent M ratio in magnetic 
layers by generalizing the conductivity expression obtained previously [11,121. We have 
included contributions from the random exchange potentials and spin fluctuations, which 
are considered to be the main scattering mechanisms yielding the resistivity in transition- 
metal multilayers. In what follows we briefly examine the effect of the electron-phonon 
interaction, which is neglected in our model calculation. When contributions AP and A: 
from the electron-phonon interaction in equations (34) and (38) are taken into account, 
a(= A,/A,) and p(= A&/Ao) are expected to have an additional temperature dependence 
besides those arising from spin fluctuations and random exchange potentials. Even in 
this case, however, the ratio a = ( ~ / p  still has the bound values of six at T = 0 and 
unity at T > Tc [ a ] ,  as was shown in figure 4(a), although the temperature dependence 
of a at 0 c T/Tc  c 1 may be slightly modified from that calculated without phonon 
contributions. This justifies, to some extent, our approximation neglecting the contribution 
from the electron-phonon interaction, because the temperature dependence of the hm ratio is 
mainly determined by that of the ratio a = a/p, as was shown at the end of section 3. The 
essential features of the temperature and Cr-thickness dependence of the hm ratio of Fe/Cr 
multilayers Gijs and Okada 1211 recently reported are fairly well explained by our model 
calculation, in which the spin-dependent bulk scattering is assumed to be predominant. For a 
better understanding of the observed data, it would be necessary to also include the interface 
scattering and to investigate the respective roles of the interface and bulk scatterings, 
although the MR in Fe/Cr systems is conventionally considered to arise from the interface 
scattering 1251. In the present study, our finite-temperature band theory 112-151 has been 
semi-phenomenologically employed. We are now considerating performing a microscopic 
calculation of the MR at finite temperatures, introducing randomness on the interface and/or 
bulk layers into the model employed in [23]. 
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